ホーム » HPCソリューション » HPCアプリケーション » 計算化学・量子化学・分子シミュレーション » Gaussian 09 » Gaussian日本語マニュアル » 密度汎関数(DFT)法

密度汎関数(DFT)法

Gaussian 03では様々な種類の密度汎関数理論(DFT)[75,76,448,449]モデルを利用することができます(DFT法やその応用に関する議論については,[448,450,451,452,453,454,455,456,457,458,459,460,461]も参照してください)。エネルギー[78],解析的グラジエント(勾配),真の解析的振動数[197,198,199] を全てのDFTモデルで求めることができます。freqmemで与えられる最適なメモリサイズと同じだけのメモリが,より一般的なモデルでは必要です。

自己無撞着反応場 (SCRF) をDFTエネルギー,最適化,振動数計算と組み合わせて,溶媒中の系を取り扱うことも可能です。

ピュア(純粋)DFT計算ではdensity fittingを利用することも可能です。詳細についてはここを参照してください。

次のサブセクションでは, DFT法の簡単な概要を示します。その次では,Gaussian 03で利用可能な汎関数を示します。最後のサブセクションでは,DFT計算での精度に関する考慮すべき事項について示します。

注意: 分極率微分(ラマン強度)や超分極率はDFT振動数計算ではデフォルトでは求められません。必要なら,Freq=Ramanを用いてください。

背景

ハートリーフォック(HF)法では,エネルギーは次の表式で表されます:

EHF = V + <hP> + 1/2<PJ(P)> - 1/2<PK(P)>

ここで,各項は次の通りです:

V     核間反発エネルギー

P     密度行列

<hP>     一電子(運動+ポテンシャル)エネルギー

1/2<PJ(P)>     古典的な電子間クーロン反発

-1/2<PK(P)>     電子の量子(フェルミオン)描像に基づいた交換エネルギー

密度汎関数理論(DFT)では,単行列式に対する厳密交換(HF)がより一般的な表式である交換−相関汎関数に対して置き換えられます。ここで交換−相関汎関数は,HF法で入っていない交換エネルギーと電子相関の両方からなる項を含んでいます。

EKS = V + <hP> + 1/2<PJ(P)> + EX[P] + EC[P]

ここで, EX[P] は交換汎関数,EC[P] は相関汎関数です。

実際HF法は密度汎関数法の特別な場合とみることができ,EX[P] が交換積分 -1/2<PK(P)>, EC=0の場合に対応します。DFT法で用いられる汎関数は通常,密度あるいは密度勾配に対するある関数の積分になっています:

EX[P] = ∫f(ρα(r),ρβ(r),∇ρα(r),∇ρβ(r))dr

DFT法は,Exに使われる関数fや(もしあれば)Ecに使われる関数fが異なります。Pure DFT法に加えて,GaussianはHF交換と上式の汎関数成分の線形結合を用いるHybrid DFT法もサポートしています。汎関数は閉じた形で評価することができない積分があり,それは数値的求積で解かれます。

DFT法に対するキーワード

様々なピュアDFTモデルに対する名称は交換および相関汎関数に対する名称の組み合わせで与えられます。いくつかのケースでは,よく使われる標準的な同意語をキーワードとして用いることもできます。

交換汎関数: 次の汎関数が Gaussian 03で利用可能です。

  • Slater: 理論的係数2/3倍されたρ4/3,局所スピン密度交換とも呼ばれます[75,76,77]。     Keyword: 単独利用: HFS, 組合せ形式: S

  • Xα: 経験的係数0.7倍されたρ4/3,通常この交換汎関数を用いるときは,相関汎関数を組み合わせずに使います[75,76,77]。Keyword: 単独利用: XAlpha, 組合せ形式: XA

  • Becke 88: Becke 1988 汎関数,この汎関数には密度勾配を入れて補正されたSlater交換を含みます[462]。Keyword: 単独利用: HFB, 組合せ形式: B

  • Perdew-Wang 91: PerdewとWangの 1991汎関数の交換成分 [463,464,465,466,467]。Keyword: 単独利用: なし, 組合せ形式: PW91

  • Barone's Modified PW91: AdamoとBaroneによる修正されたPerdew-Wang 1991交換汎関数[468]。Keyword: 単独利用: なし, 組合せ形式: MPW

  • Gill 96: Gill 1996 交換汎関数[469,470].。Keyword: 単独利用: なし, 組合せ形式: G96

  • PBE: Perdew, Burke, ErnzerhofによるThe 1996 汎関数。Keyword: 単独利用: なし, 組合せ形式: PBE

  • MPBE: AdamoとBaroneによるPBEの修正版[473]。Keyword: 単独利用: なし, 組合せ形式: MPBE

  • OPTX: HandyによるBecke交換汎関数のOPTX修正 [474]。Keyword: 組合せ形式: O

組合せ形式は通常,選んだ交換汎関数と相関汎関数(下記)とを組み合わせるときに用います。

相関汎関数:  次の相関汎関数が利用可能です(キーワード形式でリストされています)。

  • VWN: Vosko, Wilk, Nusairによる1980相関汎関数(III),RPA解を均一電子ガスにフィッテングしたものであり,しばしば局所スピン密度(LSD)相関と呼ばれます[475] (文献中の汎関数 III)。

  • VWN V(VWN5): Vosko, Wilk, Nusairらによる1980相関汎関数(V),Ceperly-Alder解を均一電子ガスにフィッテングしたものです(文献中で推奨されている汎関数です) [475]。

  • LYP: Lee, Yang, Parrによる局所および非局所項を含んだ相関汎関数[476,477].

  • PL (Perdew Local): Perdewによる局所(非勾配補正)1981汎関数[478].

  • P86 (Perdew 86): Perdewによる勾配補正をPerdew 1981局所相関汎関数に対しておこなったもの[479].

  • PW91 (Perdew/Wang 91): PerdewとWangによる1991勾配補正相関汎関数[463,464,465,466,467].

  • B95 (Becke 95): Beckeによるτ-依存勾配補正相関汎関数(単一パラメータHybrid汎関数) [480].

  • PBE: Perdew, Burke, Ernzerhofによる1996勾配補正相関汎関数[471,472].

  • MPBE: AdamoとBaroneによる修正されたPBE [473].

これら相関汎関数のキーワードは全て,用いたい交換汎関数に対するキーワードと組み合わせる必要があります。例えば,BLYPとすると,Beckeの交換汎関数とLYPの相関汎関数を使うこととなります。SVWNは,Slater交換とVWN相関汎関数を使うこととなり,またこれはLSDA(局所スピン密度近似)と同じことです。

LSDASVWNと同義です。Gaussian以外のDFT対応のソフトウェアパッケージの中には"LSDA" とすると SVWN5を用いたことになるものもあります。結果を比較する際には,ドキュメントをよくチェックしてください。

相関汎関数のバリエーション: 異なった相関汎関数の局所および非局所項を組み合わせて下記のような交換汎関数を用いることもできます:

  • VP86: VWN5局所,P86非局所相関汎関数

  • V5LYP: VWN5局所,LYP非局所相関汎関数

単独で動作する汎関数: 次の汎関数は,他の汎関数キーワードと組み合わせず,それだけで機能します。

  • VSXC: van VoorhisとScuseriaのτ-依存勾配補正相関汎関数 [481].

  • HCTH/*: Handyグループによる勾配補正を含んだ汎関数[482,483,484]。HCTHはHCTH/407を指定したことになり,同様に,HCTH93はHCTH/93,HCTH147はHCTH/147,HCTH407はHCTH/407になります。ただし,HCTC/120汎関数は実装されていません。

ハイブリッド(混合)汎関数: 3つのハイブリッド汎関数(DFT交換−相関におけるHF交換も含む)がキーワードとして利用可能です。

  • Becke3パラメータハイブリッド汎関数。これらの汎関数はBeckeにより1993年に提案された式に基づきます[79]:

A*EXSlater+(1-A)*EXHF+B*ΔEXBecke+ECVWN+C*ΔECnon-local     

ここで A, B, CはG1分子群にフィッテングするようにBeckeによって決められた定数です。

このハイブリッド汎関数にはいくつかのバリエーションが存在します。B3LYPは非局所相関としてLYP表式,局所近似としてVWN汎関数IIIから構成されます(VWN汎関数Vではありません)。LYPは局所と非局所項の両方を含むので,実際に使われる相関汎関数としては次式のようになります:

C*ECLYP+(1-C)*ECVWN

言い換えると,LYPはVWNと本質的に等価な局所項を含むので,VWNでは必要より過剰な局所相関をもたらすために使います。

B3P86は同じBecke3汎関数に Perdew 86による非局所相関を組み合わせたものを指定したことになり,またB3PW91は同様に非局所相関としてPerdew/Wang 91を用いたことになります。

  • Becke1パラメータハイブリッド汎関数。B1B95 キーワードはオリジナルの論文で提案されているBeckeの1パラメータハイブリッド汎関数を指定するために使います[480]。

    また他にも,同様の1パラメータハイブリッド汎関数(AdamoとBaroneによって実装されたもの)を用いることができます [480,485].。バリエーションの一つとして,B1LYPはLYP相関汎関数を使います(上のB3LYPで詳細は述べています)。そのほかのバージョンとして,MPW1PW91は修正Perdew-Wang交換とPerdew-Wang91相関を用います。

  • BeckeによるB97の1998年版 [486,487]. キーワードはB98です(文献中の式2cが実装されています) [487]。

  • Handy, TozerらによるB97の修正版: B971 [482].

  • Wilson, Bradley, TozerによるB97の修正版: B972 [488].

  • Perdew, Burke, Ernzerhofによる1997ハイブリッド汎関数[472]。キーワードはPBE1PBEです。この汎関数は25%の交換と75%の相関の重みがかけられています。

  • ハーフアンドハーフ汎関数。次の汎関数が実装されています:

  • BHandH:      0.5*EXHF + 0.5*EXLSDA + ECLYP

    BHandHLYP:      0.5*EXHF + 0.5*EXLSDA + 0.5*ΔEXBecke88 + ECLYP

    これらはBeckeによって提案された"half-and-half"汎関数 (J. Chem. Phys. 98, 1372 (1993))と同じものではないことに注意してください。これらの汎関数は後方互換性として用意されているだけです。

ユーザ定義モデルGaussian03では一般的な表式のモデルを用いることができます:

P2EXHF + P1(P4EXSlater + P3ΔExnon-local) + P6EClocal + P5ΔECnon-local

利用可能な局所交換はSlater (S)だけで,これは局所交換が必要なときだけ用いられるべきです。任意の組合せ可能な非局所交換汎関数と組合せ可能な相関汎関数を用いることができます(上記にリストされています)。

プログラムに対する様々な非標準オプションで6つのパラメータの値を指定します。

  • IOp(3/76=mmmmnnnn): P1mmmm/1000,P2nnnn/1000で指定します。P1は通常,交換汎関数が必要か否かで0.0か1.0に設定し,この値はP3 と P4を使ってスケーリングされます。
  • IOp(3/77=mmmmmnnnnn): P3mmmm/1000, P4nnnn/1000にします。
  • IOp(3/78=mmmmmnnnnn): P5mmmm/1000, P6nnnn/1000にします。

例えば, IOp(3/76=1000005000) にすると,P1を1.0, P2を0.5に設定したことになります。全ての値は5桁の数字で表さなければならず,必要があればゼロを付け加えなければなりません。

次の指定は,B3LYPキーワードに対応する汎関数を指定するルートセクションです。

# BLYP IOp(3/76=1000002000) IOp(3/77=0720008000) IOp(3/78=0810010000)

精度に関する考察

DFT計算はHF計算における主な段階に付加的なステップを追加して計算されます。このステップは汎関数(または汎関数の様々な導関数)に対する数値積分です。したがって,HF計算の数値的誤差の原因(積分精度,SCF収束性,CPHF収束性)だけでなく,DFT計算の精度は数値積分で用いられる点の数にも依存します。

"Fine"積分グリッド(Integral=FineGridに対応します)がGaussian03ではデフォルトです。このグリッドは最小限の付加的なコストで計算精度をとてもよく向上させます。DFT計算でより小さなグリッドを使うことは推奨しません。また,エネルギーを比較しようとする(例えば,計算したエネルギーの差,生成熱など)際に,全ての計算で同じグリッドを用いることは重要であることに注意してください。

もし必要であればより大きなグリッドを利用することも可能です(例えば,ある種のシステムにおける厳密な構造最適化など)。グリッドを変えるためには,ルートセクションでIntegral=(Grid=N))を指定してください(詳細については Integralキーワードを参照してください)

エネルギー,解析的グラジエント(勾配),解析的振動数; ADMP 計算

IOp, Int=Grid, Stable, TD, DenFit

DFT計算でレポートされるエネルギーはHF計算のものと形式は似ています。 次の例は,B3LYP計算におけるエネルギー出力です。

 SCF Done:  E(RB+HF-LYP) =  -75.3197099428     A.U. after    5 cycles

Eの後のカッコ内の項目がエネルギーを得るために用いた方法です。同様に,BLYP計算の出力は次のように表記されます。

 SCF Done:  E(RB-LYP) =  -75.2867073414     A.U. after    5 cycles