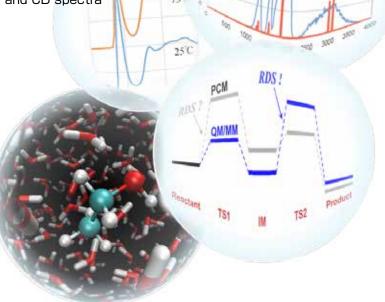
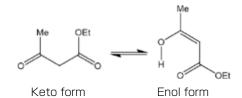


QM/MM



You can easily and automatically obtain many molecular properties in mixed solvent beyond the traditional polarizable continuum model (PCM), for example,


- · Solvent dependence of the isomer stability
- · Spectral band shape due to fluctuation of the solvation structure
- · Solvatochromism for absorption, emission, and CD spectra
- · Radial distribution functions
- · Temperature effects

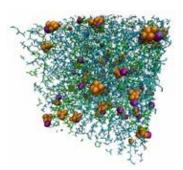
even if you know only Gaussian usage.

Tautomerism in Different Solvents

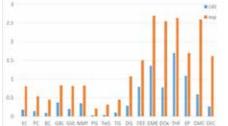
Prediction of stable isomer in solution

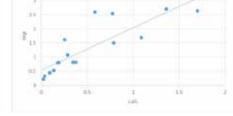
Solvents	Experiment population (keto:enol)	Calculation (PCM) relative energy (keto-enol)	Calculation (QM/MM) relative energy (keto-enol)
Cyclohexane	enol	O enol	enol
	(38% : 62%)	(+4.3kcal/mol)	(+3.8kcal/mol)
Acetone	keto	× enol	keto
	(99.9% : 0.13%)	(+2.4kcal/mol)	(-3.2kcal/mol)
Water	keto	× enol	O keto
	(93.5% : 6.5%)	(+0.9kcal/mol)	(-10.4kcal/mol)

Spectrum Width and Shift in Different Solvents



Only the peak positions and intensities can be discussed.


In addition, peak widths and spectral shapes can also be discussed.


reproducing peak shift

Efficient Evaluation of Many Materials

Electrolyte consisting of four molecular (ionic) species. Concentration can be set easily.

Diffusion coefficients for many electrolytes.

One material can be evaluated in only 30 minutes, hence 480 materials per a day using ten computers (16 core).

How to Use

(1) Create the input file

Set only molecule files, number of molecules, temperature and pressure conditions, and so on.

User also can modify details of MD calculation processes.

² Run

Just a single command. All simulation processes are automatically performed.

solution mer.input

[control] n_core style	parallel number and calculation style
[molecule] molecule01 molecule02	= 1, BMC, input/merocyanine.gjf = 1000, AC_ input/acetone.mol2 merocyanne: I molecule and localle files (merocyanne: I molecule + acetone: 1000 molecules)
[md_default] qmcondition temperature t dt_output	PM6 conditions for QM/MM calculation 298.15 temperature 9.1 time 9.001
[analysis] n_data gjf_template	number of snapshots for quantum = 64 chemistry analysis = input/template-td.gjf

Input file

Functions

1. Molecular Dynamics Automatic Simulator

Automatic Calculation

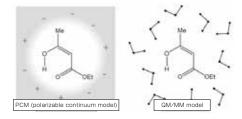
Simulation for liquid solution have ever required many procedures such as creation of molecule, set of force field, allocation of molecules in system using many programs.

QMMM plus automates all these procedures. Only molecular structure files as well as conditions for temperature and pressure are required. No action required. Energy and spectra in liquid solution can be automatically calculated.

Restart

Available for restarting in middle of procedures.

Everyone can easily perform MD calculations even that experts have ever examined after a day.


2. Molecular Dynamics Analysis

Time Evolution and Statistics of Energy and Temperature

Time evolution and statistics of energy, temperature, density, and interaction energy between a solute molecule and solvent molecules can be calculated.

Distribution and Diffusion of Molecules

RDF (radial distribution function) and diffusion behavior can be calculated.

Available also for QM/MM model.

3. Quantum Chemistry Tools

Bulk Editor

Many Gaussian input files can be edited at once.

Bulk Execution

Many Gaussian jobs can be executed under limited number of CPU cores.

4. Quantum Chemistry Analysis

Statistics of Energy, Dipole, Atomic charges

Statistical analysis is available from many Gaussian output files. Energy, dipole moments and atomic charges are represented as values with standard deviations. Therefore, a new perspective such as softness of molecular structure as is proposed.

Spectrum in Liquid Solution (IR, Raman, UV-Vis, CD, NMR)

Since QMMM plus collects statistics from quantum chemistry calculations of many molecular structures in liquid solution, it provides continuous spectra with width and shape, whereas traditional quantum chemistry have ever provided line spectra.

Property Total Energy / kcal/mol Kinetic Energy / kcal/mol Potential / kcal/mol Temperature / K Angstrom'S olume / Angitron 3 ensity / g/on 3 _Coulosb (VC_FIRST) / kcal/sol _Li(VC_FIRST) / kcal/sol _Li(VC_FIRST) / kcal/sol _Li(EC_FIRST) / kcal/sol _Li(EC_FIRST) / kcal/sol _Li(Li+FIRST) / kcal/sol _Coulosb (PE_FIRST) / kcal/sol _Li(Li+FIRST) / kcal/sol _Li(EE_FIRST) / kcal/sol

Time evolution and statistics of many properties

Calculation results are available from a browser.

5. Report

HTML-formatted Report

Calculation results are available in HTML format which can be viewed in a Internet browser. Tab-delimited output files are stored in "data" directory.

■ Software Components

Functions	plus series				
	QMMM plus	Solution plus for Amber	Solution plus for GROMACS	QM plus	
MD Automatic Simulator	SOLUTION	SOLUTION	SOLUTION	-	
MD Analysis	AMBINFO GMXINFO TRJ2GJF	AMBINFO	GMXINFO	-	
QC Tools	GAUEDIT GAURUN GJOB	-	-	GAUEDIT GAURUN GJOB	
QC Analysis	GAUINFO GAUCUBE	-	_	GAUINFO GAUCUBE	

SOLUTION	Automatic simulator of MD and QC for liquid solution
AMBINFO	Analyzer for MD outputs of AMBER
GMXINFO	Analyzer for MD outputs of GROMACS
GAUINFO	Analyzer for QC outputs of Gaussian
GAUCUBE	Analyzer for Gaussian Cube files
GAUEDIT	Editing tool for Gaussian input files
GAURUN/GJOB	Job controller for multiple Gaussian calculations
TRJ2GJF	AMBER trajectory to Gaussian input converter

^{*}MD: Molecular Dynamics, QC: Quantum Chemistry

■ System Requirements

Requirements	plus series				
○ : necessary ○ : recommended	QMMM plus	Solution plus for Amber	Solution plus for GROMACS	QM plus	
Python 2.6	0	©	0	0	
LSF, LAVA or Grid Engine	0	0	0	0	
Gaussian09	0	0	0	0	
AMBER14	0	0	0	_	
AmberTools14	0	0	0	-	
GROMACS 4.6 or 5.0	0	0	0	-	
асруре.ру	0	0	0	-	
Open Babel 2.x	0	0	0	_	
Gnuplot	0	0	0	0	
Image Magick	0	0	0	0	

HPC Systems Inc.

Head office

LOOP-X 8F, 3-9-15 kaigan, Minato-ku, Tokyo, 108-0022 Japan

TEL: +81-3-5446-5531 FAX: +81-3-5446-5550 **Kyoto Business Office**

Daimaruya Shijo Karasuma Bldg. 5F-B, 646 Nijohanjikicho, Shimogyo-ku, Kyoto,

600-8412 Japan TEL:+81-75-353-0120 FAX:+81-75-353-0121

