Molpro

Molproは英カーディフ大学のP. Knowles、独シュトゥットガルト大学のH.-J. Wernerら多くの貢献者が開発している非経験的分子軌道(MO)計算プログラムです。分子内電子構造の計算に必要なシステム一式が含まれています。配置間相互作用(CI)法、クラスター展開法、多配置SCF法、多配置参照摂動法など電子相関の取り扱いに関する広範囲な計算機能を含んでいます。従来の計算手法では分子サイズに応じて計算コストが急激に増大するため、小さな分子にのみ適用されてきましたが、Molproではより大きな分子も取り扱うことができます。

Status

New features of MOLPRO2018.1
https://www.molpro.net/info/release/doc/update/node1.html

GMOLPRO: a graphical user interface
A powerful graphical user interface (based on PQSMol) for building and preoptimising molecular structures, preparing and running Molpro inputs, and visualisation of results (will soon be available).
An improved parallel MCSCF program
Most parts of the MCSCF/CASSCF program have been re-implemented and better parallelized. The new program further enhances the robustness of convergence and the efficiency. New algorithms for an efficient treatment of large molecules are under development and will be made available soon.
Quasi-variational coupled-cluster (QVCCD)
Improved efficient implementation of quasi-variational coupled-cluster (QVCCD).
Analytical energy gradients for coupled cluster methods
Analytical energy gradients for closed shell DF-MP2-F12, DF-CCSD(T)-F12, CCSD(T) and open-shell [DF-]RMP2 have been added. The gradients for explicitly correlated (F12) methods are restricted to certain Ansätze; please refer to the users manual for details and W. Györffy, G. Knizia and H.-J. Werner, J. Chem. Phys. 147, 214101 (2017); W. Györffy and H.-J. Werner, J. Chem. Phys. 148, 114104 (2018).
Analytical energy gradients for projector-based WF-in-DFT embedding
Analytical nuclear gradients have been implemented for projector-based wavefunction-in-DFT (WF-in-DFT) embedding with and without atomic orbital (AO) truncation. The current available methods that can be used for the WF method on subsystem A are CCSD(T), CCSD, MP2, and HF. The current available methods that can be used for the low-level SCF method are LDA, LDAX (LDA with any amount of exact exchange) and HF. The support for using GGAs as the low-level method will be coming soon.
Analytical energy gradients for local methods
Analytic energy gradients for local MP2, RMP2, CC2 and ADC(2) (with density fitting) are available. These methods can be used for geometry optimisations and property calculations of larger molecules.
Local coupled cluster linear response method for ionization potentials
A hierarchy of local coupled cluster models for ionization potentials employing LMP2 or LCC2 ground state amplitudes and the Jacobian formally reaching the IP-CCSD level: IP-CCSD$_{\rm CC2}$ is now available. For details see G. Wälz, D. Usvyat, T. Korona, M. Schütz, J. Chem. Phys. 144, 084117 (2016).
Local MP2 NMR shielding
Local MP2 NMR shielding, magnetisability, and rotational g tensors.
MR-CCSD(T)
The internally contracted multi-reference program of A. Köhn et al. has been interfaced to Molpro. An embedded Multireference Coupled Cluster method as described in D. J. Coughtrie, R. Giereth, D. Kats, H.-J. Werner, and A. Köhn, J. Chem. Theory Comput. 14, 693 (2018) is also available.
Local density fitting Hartree-Fock and Kohn-Sham (LDF-HF, LDF-KS)
A new parallel implementation of Hartree Fock with local density fitting (closed and open-shell), as described in C. Köppl, H.-J. Werner, J. Chem. Theory Comput. 12, 3122 (2016). This program can run in parallel across several nodes and is for large systems significantly faster than canonical DF-HF, DF-KS.
Local complete active space second-order perturbation theory with pair natural orbitals (PNO-CASPT2)
An accurate and efficient local PNO-CASPT2 for large molecules as described in F. Menezes, D. Kats, H.-J. Werner, J. Chem. Phys. 145, 124115 (2016). For extended systems the computational effort scales linearly with molecular size. A multi-state version will be made available soon.
PNO-LCCSD(T)-F12
Explicitly correlated well parallelized PNO methods are now available up to the PNO-LCCSD(T)-F12 level. This program yields results that are very close to the corresponding canonical CCSD(T)-F12 ones. For medium size cases where canonical calculations are still feasible, the PNO-LCCSD(T)-F12 is up to an order of magnitude faster than the canonical CCSD(T)-F12 program, while relative energies typically differ by only 0.2 kcal/mol. The largest applications so far include molecules with up to about 300 atoms and 10000 basis functions. The methods are described in H.-J. Werner, J. Chem. Phys. 145, 201101 (2016). M. Schwilk, Q. Ma, C. Köppl, H.-J. Werner, J. Chem. Theory Comput. 13, 3650 (2017); Q. Ma, M. Schwilk, C. Köppl, H.-J. Werner, J. Chem. Theory Comput. 13, 4871 (2017); Q. Ma and H.-J. Werner, J. Chem. Theory Comput. 14, 198 (2018). A review can be found in Q. Ma and H.-J. Werner, WIREs Comput. Mol. Sci. 2018;e1371. References for PNO-LMP2 and PNO-LMP2-F12 are given under “New features for Molpro2015.1”.
D4 dispersion correction for DFT
The new D4 dispersion model improves the description of atomic dispersion coefficients through charge-dependent local polarisabilities obtained by a self-consistent tight-binding method, see E. Caldeweyher, C. Bannwarth, and S. Grimme J. Chem. Phys. 147, 034112 (2017)
Nonlocal DFT method
The nonlocal DFT method (NLDFT) improves the description of long-range correlation interactions of standard DFT functionals through a double-Hirshfeld partitioning of the correlation energy density, see A. Heßelmann, J. Chem. Theory Comput. 9, 273 (2013).
Kohn-Sham RPA methods
Random-phase approximation electron correlation methods based on Kohn-Sham reference determinants, see Refs. A. Heßelmann, Phys. Rev. A 85, 012517 (2012); A. Heßelmann and A. Görling, J. Chem. Theory Comput. 9, 4382 (2013).
New features in DFT-SAPT
Several new features have been implemented in the DFT-SAPT program, including:
-Exchange interaction energy contributions without the single-exchange approximation (R. Schäffer and G. Jansen, Theor. Chem. Acc. 131 (2012) 1235; Mol. Phys. 111 (2013) 2570)
-DFT-SAPT employing exact-exchange response kernels (A. Heßelmann, J. Chem. Theory Comput. 14 (2018) 1943)
-Regularised SAPT for estimating short-range polarisation interactions (A. J. Misquitta, J. Chem. Theory Comput. 9 (2013) 5313)
Automated selection of molecular active space (AVAS)
This method helps to find good starting orbitals for CASSCF calculations. It is based on the work of Knizia et al., J. Chem. Theory Comput. 13, 4063 (2017).
Further enhancements
-Improved parallelization of coupled-cluster codes
-Improved DFT quadrature
-New plugin interfaces for other programs, e.g. MR-CCSD(T), DMRG and FCIQMC codes, supporting directed parallel execution
-Implementation of the eXact-2-Component (X2C) scalar relativistic Hamilitonian
Support for a Gaussian finite nucleus model
-New correlation consistent basis sets for heavy alkali and alkaline earth elements (both relativistic all-electron and with ECPs), as well as all-electron (DK3 and X2C) basis sets for the lanthanide and actinide elements.
-X2C-contracted versions for all the standard correlation consistent basis sets for H, He, B-Ne, and Al-Cl, e.g., cc-pVDZ-X2C

マニュアル

https://www.molpro.net/info/current/doc/manual/index.html

特記事項

デフォルトの密度フィッティングの積分法が AIC という高速なタイプに変更になりました。基底関数にもよりますが F12 計算では10倍近く向上したようです。
基底関数セットの大幅拡充がされています。
GA ライブラリを使わず、直接MPIで並列する方法にシフトしているようで、そのパフォーマンスが大幅に向上したとあります。
早速ダウンロードしてみましたが、検証はこれからです。Molpro がビルドしたバイナリ版もありますので、可能なら比較データを出してみたいと思います。

  • キャンペーン情報
    現在開催されているお得なキャンペーン情報はこちらから。
    詳細
  • ご購入前のお問合せ
    フォームにご入力いただければ後ほど営業よりご連絡させていただきます。
    詳細
  • 見積り依頼
    フォームにご入力いただければ後ほど営業よりご連絡させていただきます。
    詳細
Contact

お問い合わせ

お客様に最適な製品をご提案いたします。まずは気軽にお問い合わせ下さい。
03-5446-5531

平日9:30~17:30 (土曜日、日曜日、祝祭日、年末年始、夏期休暇は、休日とさせていただきます。)